If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x(x+60)=160
We move all terms to the left:
x(x+60)-(160)=0
We multiply parentheses
x^2+60x-160=0
a = 1; b = 60; c = -160;
Δ = b2-4ac
Δ = 602-4·1·(-160)
Δ = 4240
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{4240}=\sqrt{16*265}=\sqrt{16}*\sqrt{265}=4\sqrt{265}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(60)-4\sqrt{265}}{2*1}=\frac{-60-4\sqrt{265}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(60)+4\sqrt{265}}{2*1}=\frac{-60+4\sqrt{265}}{2} $
| 11x+(-3)=-4 | | -3x+4=6x+49 | | 5z+36=z-60 | | 4p-14p+10=-150 | | 19c+7=c-605 | | 2(7x+4)(100x^2−9)=0 | | 2x(3+x)=16x+1500 | | 4(9x+6)=36x-7 | | -3d-8=d-148 | | 2x+16=8x−74 | | b+147=-4b-8 | | 3x+9=8x-41 | | -8x+7=x+367 | | 2k+7+5=24 | | 3(4x+2)=20-9x+2 | | x-79=-x-5 | | 8k-k=0 | | 2x(3+x)=10x+1680 | | -u-8=u+54 | | c-69=-c-3 | | 12=3n+2+1 | | -y+5=y+33 | | a+58=-a+6 | | y+1y=130 | | 4(x/8-2)=1/4(2x- | | 6.7a+12=92.4, | | 11x-15x-5=-17 | | x+1x=130 | | 98+64+x=180 | | 66-x=54.6 | | 33+2x+81=180 | | 1-1a=12 |