If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x(x+65)=180
We move all terms to the left:
x(x+65)-(180)=0
We multiply parentheses
x^2+65x-180=0
a = 1; b = 65; c = -180;
Δ = b2-4ac
Δ = 652-4·1·(-180)
Δ = 4945
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(65)-\sqrt{4945}}{2*1}=\frac{-65-\sqrt{4945}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(65)+\sqrt{4945}}{2*1}=\frac{-65+\sqrt{4945}}{2} $
| 6x=7+9x-56=180 | | 3x=30+4 | | 2(4x-12)-(x+8)=-3(x-6) | | X2-11x=-8 | | 3x/8-(5/3+1-x/6)=7/8 | | -4K+5(-2-3k)=-105 | | 6.5n=(-4) | | -x-(11+4x)=-3(5-9x)+20 | | 4m+44=10m-10 | | 3c−33=27 | | 64=x-41 | | 42+6w=84 | | 3x^2−5=49 | | x−3=−27 | | -8x+22=7(5x-3) | | 5t=20+40 | | -3x+815−3x+8=15 | | 3x2−5=49 | | 5-6r=6r+7(-2r-1) | | 2(n+2)=6+4n | | 5x+13=-37. | | 15—10x=5(x+9) | | -4x-20=-2(3x+8) | | 6+5x+4x=69 | | 4(1-6x)=36-8x | | 6m+24=12m | | -4m-39=7(8m+3) | | 10-x+7x=-26 | | 1+8n=6+1+7n-3 | | 3a-12=a | | -2(t-7)=4t+12 | | -x-2-4=3x+62 |