x(x+9)=3(x+4)

Simple and best practice solution for x(x+9)=3(x+4) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for x(x+9)=3(x+4) equation:



x(x+9)=3(x+4)
We move all terms to the left:
x(x+9)-(3(x+4))=0
We multiply parentheses
x^2+9x-(3(x+4))=0
We calculate terms in parentheses: -(3(x+4)), so:
3(x+4)
We multiply parentheses
3x+12
Back to the equation:
-(3x+12)
We get rid of parentheses
x^2+9x-3x-12=0
We add all the numbers together, and all the variables
x^2+6x-12=0
a = 1; b = 6; c = -12;
Δ = b2-4ac
Δ = 62-4·1·(-12)
Δ = 84
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{84}=\sqrt{4*21}=\sqrt{4}*\sqrt{21}=2\sqrt{21}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-2\sqrt{21}}{2*1}=\frac{-6-2\sqrt{21}}{2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+2\sqrt{21}}{2*1}=\frac{-6+2\sqrt{21}}{2} $

See similar equations:

| 84+12x=-4(12x+9) | | s−7=22s= | | -1(-10n+1)-9=1-3(n-5) | | -17+5n=-n+6(-4+n) | | -4(-8v+8)-7v=93 | | 5-4(3v+1)=1+4(2v+20) | | 4=5a-2+3a | | 10=2x-6/5 | | 165=25x(B) | | 8c+30=334 | | 4x-14=2x=-10 | | 94=x/4 | | 18-6k+3=4k-19 | | 243.25=15.75+22.75x | | 8j+9=5j+12 | | 2-4(x+7)=-2 | | 5(3n-2)=2(n+3)-3 | | 3.27+4x=5.03 | | -254=4-6(1+6x) | | 6(x+3)+2(x-2)=66 | | 1.61+6x=13.19 | | 4(x–26)=–200x= | | 8-4x=-52 | | 6=n÷5.2 | | -68n+42=0 | | 4b-2=2(b+1) | | 4x*6=240 | | 7(-8+4n)+4(-7n+5)=-36 | | 4.25x+156=347.25 | | 2x+6=7x+31 | | -21=v-8 | | 1.84+8x=9.68 |

Equations solver categories