If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x(x-1)=35
We move all terms to the left:
x(x-1)-(35)=0
We multiply parentheses
x^2-1x-35=0
a = 1; b = -1; c = -35;
Δ = b2-4ac
Δ = -12-4·1·(-35)
Δ = 141
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-1)-\sqrt{141}}{2*1}=\frac{1-\sqrt{141}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-1)+\sqrt{141}}{2*1}=\frac{1+\sqrt{141}}{2} $
| 0.3x-0.24x=0.36+0.52x | | x^2+12×+36=0 | | 5x+9=5(3+x) | | (2x+3)^2=(3x−1)^2 | | 1/2x-7=-89 | | 2x-5/7=5/14x+5 | | 2×+3y=40 | | -8-x=x-4× | | 15x+50-5x=97 | | 1-2y-15y^2=0 | | 2x^-3x-90=0 | | X^2-20x+12000=0 | | -5(5y-8)-y=-2(y-3) | | (20x^2-23x+6)×(20x^2-32x+3)=4 | | 50x-120=260 | | 10(s-9)=191 | | n3=26 | | 15^2-19x+6=0 | | X=(1/3x)+(2/5x)+16 | | 57v=-5 | | P²-2p-1=0 | | 9x*x=25*9 | | X^2+15x-6500=0 | | 3x^2-12x-800=0 | | 5y-(3y+4=2 | | 3x+11=20-x | | d+2/d-2=7/2 | | 2x-5=62 | | 2x+4=15.X=2 | | 7(2e+3)=(4e+9) | | Z÷2x10+.5x10=7 | | Y-7=-3(x-3) |