x(x-14)=2(x+13)

Simple and best practice solution for x(x-14)=2(x+13) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for x(x-14)=2(x+13) equation:



x(x-14)=2(x+13)
We move all terms to the left:
x(x-14)-(2(x+13))=0
We multiply parentheses
x^2-14x-(2(x+13))=0
We calculate terms in parentheses: -(2(x+13)), so:
2(x+13)
We multiply parentheses
2x+26
Back to the equation:
-(2x+26)
We get rid of parentheses
x^2-14x-2x-26=0
We add all the numbers together, and all the variables
x^2-16x-26=0
a = 1; b = -16; c = -26;
Δ = b2-4ac
Δ = -162-4·1·(-26)
Δ = 360
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{360}=\sqrt{36*10}=\sqrt{36}*\sqrt{10}=6\sqrt{10}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-16)-6\sqrt{10}}{2*1}=\frac{16-6\sqrt{10}}{2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-16)+6\sqrt{10}}{2*1}=\frac{16+6\sqrt{10}}{2} $

See similar equations:

| 3x+6-5x=4 | | 11+4n+5+5n=4n+7n | | 90x+7x-14=180 | | 11(n-1)=10n | | -5=3x+14 | | 6+1/2x=48 | | 2b+4=3b+1 | | 3x+1/x-1=5 | | 12a-a=11 | | 6.9x-9.1=39.2 | | (X+1)(x+4)=4 | | 8x-12=-2x2 | | 20/6=x/9 | | 8x-12=-2x | | 4/9=9/m | | -5-3a=16 | | 3.5x-10.1=-2.8 | | x2-3x-40=0 | | 4x+6=1/4 | | (x^2/8)-(3x/4)-2=0 | | x/10=9/6 | | -10(4y-8)-3y=-9 | | 7/8x=8/1 | | (4r+16)/12=(5r-20)/5 | | 0=-16.1t^2+3t+32.6 | | 15/25=24/x | | 9x-5x3=51 | | 4x2-30x=12+10x | | 3x​2​​+11x+6=0 | | 5a+6=36. | | 97x+197-76x=34x+65-97x+197-76x-40 | | 8-7n=6n+2n |

Equations solver categories