If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x(x-17)-18x=(x-3)+(x+16)
We move all terms to the left:
x(x-17)-18x-((x-3)+(x+16))=0
We add all the numbers together, and all the variables
-18x+x(x-17)-((x-3)+(x+16))=0
We multiply parentheses
x^2-18x-17x-((x-3)+(x+16))=0
We calculate terms in parentheses: -((x-3)+(x+16)), so:We add all the numbers together, and all the variables
(x-3)+(x+16)
We get rid of parentheses
x+x-3+16
We add all the numbers together, and all the variables
2x+13
Back to the equation:
-(2x+13)
x^2-35x-(2x+13)=0
We get rid of parentheses
x^2-35x-2x-13=0
We add all the numbers together, and all the variables
x^2-37x-13=0
a = 1; b = -37; c = -13;
Δ = b2-4ac
Δ = -372-4·1·(-13)
Δ = 1421
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1421}=\sqrt{49*29}=\sqrt{49}*\sqrt{29}=7\sqrt{29}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-37)-7\sqrt{29}}{2*1}=\frac{37-7\sqrt{29}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-37)+7\sqrt{29}}{2*1}=\frac{37+7\sqrt{29}}{2} $
| (2x-14)=(2x+19) | | (2x+19)=(2x-14) | | v+-62=37 | | f-19=-12 | | 6(g+3)+6=2g-4 | | 2s=10,s= | | 3n+3-5(n-1)=16. | | 7x+39=67 | | (2x-25)=87 | | 63g-39g-7g-12g-2g=15 | | 14n-(-43n)+(-55n)-(-12)=-60 | | 25r-65r-61r+99r+49=-17 | | -67j+21j-(-85j)-26j=91 | | 33g-13g+8g+8g+10g+10=56 | | -40n-(-4n)+92n=-56 | | 81y-70y-(-92)=-84 | | -13a-(-9a)-8=16 | | 45m-(-45m)+(-26m)-(-30)=-34 | | (X+3)2^+(y-4)2^=36 | | x+(x+1)+(x-1)=195 | | 25n-38n+(-13)=26 | | (x+1)+(x-1)=195 | | 21c+40c-(-42c)-32c+(-22c)=49 | | 6u-9u=6(2)+u | | 16z+(-14z)+11z-(-3z)=-16 | | 18v+12v-7v-15v+(-7v)-(-7)=-13 | | 10v-3v+v+v=9 | | x+(x-1)+(x-3)=195 | | 2+10x=x-7(8) | | 10p-3p+p+2p-9p=20 | | 7j+-11j-(-7j)+j-j+-13=-1 | | 5s-s-s-2s=6 |