x(x-2)(x+2)=5760

Simple and best practice solution for x(x-2)(x+2)=5760 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for x(x-2)(x+2)=5760 equation:



x(x-2)(x+2)=5760
We move all terms to the left:
x(x-2)(x+2)-(5760)=0
We use the square of the difference formula
x^2-4-5760=0
We add all the numbers together, and all the variables
x^2-5764=0
a = 1; b = 0; c = -5764;
Δ = b2-4ac
Δ = 02-4·1·(-5764)
Δ = 23056
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{23056}=\sqrt{16*1441}=\sqrt{16}*\sqrt{1441}=4\sqrt{1441}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{1441}}{2*1}=\frac{0-4\sqrt{1441}}{2} =-\frac{4\sqrt{1441}}{2} =-2\sqrt{1441} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{1441}}{2*1}=\frac{0+4\sqrt{1441}}{2} =\frac{4\sqrt{1441}}{2} =2\sqrt{1441} $

See similar equations:

| b/3+5=3b/2+1/3 | | 12y-11y=5 | | 9-6w=4-5w | | d2+ 16=20 | | 4a+56=7a-4 | | 6t+8=2t | | .2x+2.4=6 | | 6+7r-6=8r+6 | | 6+10h=-1+9h | | 2c−6=8 | | 3=51/w | | 999999999999999999999999999999999999999999999999999999999999999999x-99999999999999999999999999999999999999999999999x=x | | m/4+8=22 | | 18s-16s=20 | | 3v+6=-8+10V | | 3v+6=-8+10= | | 3v+6=-8+10 | | -7+2r=3r | | -7+2r=34 | | -1-6b=-5b-10 | | 2f=-6-4f | | 6u=5u+8 | | 7x/8=22 | | 8r=10+10r | | -5-2m=-3m | | x/420=0.1/6 | | 5/6=20/x+6 | | 10s=10+5s | | 5-(3n+4)=2n-9 | | 2(2b+4)=54 | | 107-u=285 | | 45s=4,725 |

Equations solver categories