If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x(x-280)=450
We move all terms to the left:
x(x-280)-(450)=0
We multiply parentheses
x^2-280x-450=0
a = 1; b = -280; c = -450;
Δ = b2-4ac
Δ = -2802-4·1·(-450)
Δ = 80200
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{80200}=\sqrt{100*802}=\sqrt{100}*\sqrt{802}=10\sqrt{802}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-280)-10\sqrt{802}}{2*1}=\frac{280-10\sqrt{802}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-280)+10\sqrt{802}}{2*1}=\frac{280+10\sqrt{802}}{2} $
| n/6+6=7 | | x(x+280)=4500 | | 9p41+p;p=10 | | (X+y)/11=20 | | m-63.28,14.93,m=77.86,78.15,79.20 | | 42=9x+15 | | x(2x-3)=350 | | c=6,7,8,9 | | -32x=42 | | -3(x-1)=9-6x | | x(3x+1)=352 | | m=3.9,3.91,4,4.11 | | 10-55=x | | k/2-4=1 | | X+3x+4=56 | | 2=(x+7)/2 | | 14r=-8+10r | | x(x-4)=117 | | P=x/0.8-2.4/0.8 | | s÷(5)=4 | | 23x-7=-30 | | 47=3x+7 | | |3x+4|-2=0 | | P=x-2.4/0.8 | | 5(4–3x)=-10 | | 7-6x=-33-14x | | 2b-24=68+180 | | X2+2x+1=100 | | 11=23(8x+12)32 | | 11= 23(8x+12)32 (8x+12) | | 6(4x-3)=8(3x-2) | | 0.14(x+1000)=5740 |