x(x-3)+x(x-4)=12-x

Simple and best practice solution for x(x-3)+x(x-4)=12-x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for x(x-3)+x(x-4)=12-x equation:



x(x-3)+x(x-4)=12-x
We move all terms to the left:
x(x-3)+x(x-4)-(12-x)=0
We add all the numbers together, and all the variables
x(x-3)+x(x-4)-(-1x+12)=0
We multiply parentheses
x^2+x^2-3x-4x-(-1x+12)=0
We get rid of parentheses
x^2+x^2-3x-4x+1x-12=0
We add all the numbers together, and all the variables
2x^2-6x-12=0
a = 2; b = -6; c = -12;
Δ = b2-4ac
Δ = -62-4·2·(-12)
Δ = 132
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{132}=\sqrt{4*33}=\sqrt{4}*\sqrt{33}=2\sqrt{33}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-6)-2\sqrt{33}}{2*2}=\frac{6-2\sqrt{33}}{4} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-6)+2\sqrt{33}}{2*2}=\frac{6+2\sqrt{33}}{4} $

See similar equations:

| -9x-1=54 | | -10=5n-4-8n | | 33+2p=-13 | | 6(x-1)=9(xx4) | | 9x+3/5=-5x | | 8x-3=5(2x+1)-2x | | 4(x+6)+2x=15 | | -8(5a-3)=-15-a | | 5=4x+1^2 | | t-17+5=8 | | 3(1+8p)=147 | | 5x+7+x-9x=0 | | 2x+6=9x+3 | | 3x+112=5x+110 | | 426.84=200+1.06x | | 1/2(18z+6)-2=8(z-1) | | 4(3+x)+6=4x+6 | | 4(2z+1)-3(z-8)=15+6z | | -x-(-10x)=0 | | 4(3+x)+6=4x | | 8y-(-8y)=0 | | 2^x+^6=2^10 | | -2x=-5x-2 | | 6m+3=4m-30+6 | | -4x-5x=0 | | 3x/4+2x=2 | | -9.1=2.1+y/7 | | 2^x^+^6=2^10 | | -15-6t=-22 | | 6(3a+1)-30=-3(2a-4) | | 5x-12=x-6 | | r2+2r=80 |

Equations solver categories