If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x(x-4)=160
We move all terms to the left:
x(x-4)-(160)=0
We multiply parentheses
x^2-4x-160=0
a = 1; b = -4; c = -160;
Δ = b2-4ac
Δ = -42-4·1·(-160)
Δ = 656
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{656}=\sqrt{16*41}=\sqrt{16}*\sqrt{41}=4\sqrt{41}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-4\sqrt{41}}{2*1}=\frac{4-4\sqrt{41}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+4\sqrt{41}}{2*1}=\frac{4+4\sqrt{41}}{2} $
| x–3x+4–2x=7x+9 | | 5x-10x=19 | | y-29=-47 | | x-5=-x-5+x | | 3(5y+2)=27 | | 4(4x−3)=8(2x−2)+4 | | -3(u-7)=5u+13 | | 6x+0=4x-10 | | 7u-22=-8(u-1) | | 3(8-y)=-(y-4) | | 4(u-6)=2u-32 | | -9/x=4 | | -9÷x=4 | | 2(7x+3)+4=7(2x−1)+2x | | 9x+4Y=296 | | -13+9-6=-6x+7x-17x | | 7u+35=105 | | 5x^2+x-45x2+x−4=0 | | 4u-3=-7 | | 3x+6x=20-3x+4x | | -6/4r+3r=1/3r+22/3 | | 3=45a^2-6a | | 8x+10=x+66 | | 9u-36=51 | | 3b+54=54 | | -8=(x=1) | | 2v+9=18 | | (3y-7)-(y+7)=9y | | f/6=0.25 | | (y-4)÷2=(2-y)÷3 | | 95=(x-5) | | 20=-6u+8(u+5) |