If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x(x-45)=0
We multiply parentheses
x^2-45x=0
a = 1; b = -45; c = 0;
Δ = b2-4ac
Δ = -452-4·1·0
Δ = 2025
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{2025}=45$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-45)-45}{2*1}=\frac{0}{2} =0 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-45)+45}{2*1}=\frac{90}{2} =45 $
| 4(x-1=8 | | 49x^2-45=0 | | 5x^2+11x+36=0 | | 12000-x/10000=x | | 5-5n=-270 | | 11=3y-5 | | 4v=—32 | | (11x-18)2+40=180 | | N3n=90 | | 4x-16=134 | | 6x-15x+3=180 | | m²-9m=-18 | | -18-8n=20-n(6) | | 9x^2-95x+252=0 | | 25m+14-5m+8=-5=28 | | 6b-10=56 | | 0(p)=6-2p/0 | | 6b-14=10 | | 14.4=1.2m | | 20+-2y=15+-1y | | 80-n/6=76 | | n/3+24=30 | | 7-(2x+1)=-13(x+1) | | y/25=3 | | 5(2x–4)=8x–12 | | (7x-1)-(x-1-x/2)=5x+1/2 | | -7(x+11)=-7(x+9)+7x | | 21-w=2w | | -2(3s-4)-8=-3(7s+5)-5 | | 3(w-6)-7w=-10 | | 5k-5=-85 | | 5x-(3x+3)=4x-31 |