If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x(x-45.5)=6000
We move all terms to the left:
x(x-45.5)-(6000)=0
We multiply parentheses
x^2-45.5x-6000=0
a = 1; b = -45.5; c = -6000;
Δ = b2-4ac
Δ = -45.52-4·1·(-6000)
Δ = 26070.25
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-45.5)-\sqrt{26070.25}}{2*1}=\frac{45.5-\sqrt{26070.25}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-45.5)+\sqrt{26070.25}}{2*1}=\frac{45.5+\sqrt{26070.25}}{2} $
| -5x-3(-1)=18 | | -5r+5r=1-2r+2r-1 | | 3x+6=-14 | | N-5/3=n-6/4 | | a/10=-{-13} | | -5x-3=18 | | 4x2=12x-9 | | 4+6p=7p+6 | | 1/6u=-40 | | x2+2x+1=36 | | (3x-4)^2+4(3x-4)-12=0 | | 42=-2t^2+20t | | 1x+(-5)=10 | | -2x+-20=-2 | | 10x-4x+132=10x+52 | | 2(3x-4)+1=5 | | p/13=6 | | 2(x-3)^2+4=12 | | 3n+5=2+6n | | 1/3h-2=6 | | −0.25x−2=−8.5x+1.4 | | 1/7+1/3x=6/7 | | 5x-14=3x+10 | | 3(g-7)=2(10*g) | | 4q-5=-8 | | 3(g-7=2(10*g) | | 9u2+25=30u | | 2/5(x-16=-6 | | 4z-7=-6 | | 7x+4×+16=-39 | | 2x^2-3x=16 | | r2+2r=35 |