If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x(x-5)=644
We move all terms to the left:
x(x-5)-(644)=0
We multiply parentheses
x^2-5x-644=0
a = 1; b = -5; c = -644;
Δ = b2-4ac
Δ = -52-4·1·(-644)
Δ = 2601
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{2601}=51$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-5)-51}{2*1}=\frac{-46}{2} =-23 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-5)+51}{2*1}=\frac{56}{2} =28 $
| 3x+7=9x+6 | | 12+8x=82 | | 180=64+(5x-10)+(18x+30) | | -2r+r=10 | | 5(5n-8)=25n-40 | | 6x/47=42 | | 5(2n-8)=10n-40 | | 9k+40=10 | | 1/7x-3=0 | | 15+3x=150 | | 15(n-8)=15n-40 | | 8-2x=-18 | | -2+2x+x=-2 | | C=x+0.13x+5 | | 5(2n+8)=10n+40 | | y/6+8=0 | | 70+50w=525 | | R/5=4/7r= | | y/6+8=50 | | 4f−6=-6+4f | | U^2-4u/5=12 | | 19x-6=21 | | n/n-9=10/5 | | 9v-21=-6(v-4) | | 2(x)+25+4x+35=180 | | 3(4x-6)=2(4-3)-(x-8) | | 4x+5-3x-8=2x-2 | | 8(u-8)=-4u+8 | | 46+4x=-6x+6 | | 8-7m=-83 | | 5^x-1=25^3/4 | | 8-x=82.1 |