x(x-8)+(x-2)(x-3)=1.75

Simple and best practice solution for x(x-8)+(x-2)(x-3)=1.75 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for x(x-8)+(x-2)(x-3)=1.75 equation:



x(x-8)+(x-2)(x-3)=1.75
We move all terms to the left:
x(x-8)+(x-2)(x-3)-(1.75)=0
We add all the numbers together, and all the variables
x(x-8)+(x-2)(x-3)-1.75=0
We multiply parentheses
x^2-8x+(x-2)(x-3)-1.75=0
We multiply parentheses ..
x^2+(+x^2-3x-2x+6)-8x-1.75=0
We get rid of parentheses
x^2+x^2-3x-2x-8x+6-1.75=0
We add all the numbers together, and all the variables
2x^2-13x+4.25=0
a = 2; b = -13; c = +4.25;
Δ = b2-4ac
Δ = -132-4·2·4.25
Δ = 135
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{135}=\sqrt{9*15}=\sqrt{9}*\sqrt{15}=3\sqrt{15}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-13)-3\sqrt{15}}{2*2}=\frac{13-3\sqrt{15}}{4} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-13)+3\sqrt{15}}{2*2}=\frac{13+3\sqrt{15}}{4} $

See similar equations:

| 120*3x=438 | | 4*10x=7 | | 4*1x=7 | | x^2+6x=-65 | | 5x-17=2x-1/ | | 6x/5=8×4 | | 3n^2+303n-8100=(-24300) | | 25-8=x×20 | | 2(4x-76)=180 | | 3x-73=4x-76 | | p-12=2p-42 | | n+72=106 | | 3x-41=2x-17 | | 3y+2(y+2)=13-(2y+5) | | 3*4^2k/8=24 | | 4k+3=-9-k | | -25p+3=15p+11 | | 2.7=-4/9y | | -2.3=c+5/6 | | -.6k=9.6 | | -18-3x=-5x+8 | | 2x-29=-1x+10 | | 5x-49=-6x+72 | | -15+2x=6-1x | | 4x-12=-3x+30 | | 4x-24=53-3x | | -7+3x=-1x17 | | 7x-x=144 | | -2x-28=16-6x | | 4x-21=-3x+28 | | -9+3x=1x+21 | | 2x+4x-1=3 |

Equations solver categories