If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x(x+1)=132
We move all terms to the left:
x(x+1)-(132)=0
We multiply parentheses
x^2+x-132=0
a = 1; b = 1; c = -132;
Δ = b2-4ac
Δ = 12-4·1·(-132)
Δ = 529
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{529}=23$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-23}{2*1}=\frac{-24}{2} =-12 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+23}{2*1}=\frac{22}{2} =11 $
| 132=x(x+1) | | 4^2x+1=8^x+3 | | 24=3m-6 | | 12=23-d | | 7(5-3w)= | | 132=x*(x+1) | | 3=q-7 | | 36-10x=18+8x | | 2(n+1/3)=2/3n+1 | | 5x+29(x-3)=219 | | 10+z=2 | | 16u=8u+56 | | 2(n+1/3=2/3n+1 | | 26=q+23 | | 34+5m=6(4m-7) | | 2x+x-2=x+3 | | 2x/3=3-4x | | (x+6)/7=2-(x+6/3) | | 5(6+r)=35 | | 4=f-10 | | 22-6p=0 | | 6=14-f | | 22-2p=0 | | 16x+20=22x+7 | | 4t2+8t+4=0 | | -2(x+5)=28 | | 12x+1=-7 | | 6h+7+h=56 | | 9i=108 | | y/7+4=-14 | | -4(2x+5)+3x=-9x-21 | | 0=-6x^2-x+2 |