If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x(x+20)=90
We move all terms to the left:
x(x+20)-(90)=0
We multiply parentheses
x^2+20x-90=0
a = 1; b = 20; c = -90;
Δ = b2-4ac
Δ = 202-4·1·(-90)
Δ = 760
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{760}=\sqrt{4*190}=\sqrt{4}*\sqrt{190}=2\sqrt{190}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(20)-2\sqrt{190}}{2*1}=\frac{-20-2\sqrt{190}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(20)+2\sqrt{190}}{2*1}=\frac{-20+2\sqrt{190}}{2} $
| 2/3*(3x+9)+24=x/6+x/9-(7x-3)/6 | | b+5/3=b+8/2 | | 2x=25/36 | | z÷10-4=5 | | 6+55x=44x=14 | | 4x+6-6x=10+2 | | 10m+3=98 | | x-1=3x+1312 | | 11p-2=-4p-47 | | 19+12t=39 | | 7t-13=4t+11 | | 3x-9=3+x | | 19s+12=39 | | 7+8q=12 | | 3p+18=2p | | 3p+4=4 | | 9b=3b+21 | | 4+2t=28 | | 4s+2=28 | | x^2-7x10=0 | | 2p+4=22 | | 3(y-7)=14 | | 2x+6+9x-3=3 | | 3(2x-7)=x+9 | | -x^2+8x-7=8 | | 7x+2x-12=3x+12 | | 2x-4=60-3-3x | | 3(x−6)=2(x−7) | | 6x-18-2x-2=10 | | 5x+11=38−4x | | 5+14x+7x2=3x(x+1) | | A=12x4 |