If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x(x+7)=120
We move all terms to the left:
x(x+7)-(120)=0
We multiply parentheses
x^2+7x-120=0
a = 1; b = 7; c = -120;
Δ = b2-4ac
Δ = 72-4·1·(-120)
Δ = 529
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{529}=23$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(7)-23}{2*1}=\frac{-30}{2} =-15 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(7)+23}{2*1}=\frac{16}{2} =8 $
| 100x-(50(x^2))=0 | | x+2+x=21 | | 100x-50x^2=0 | | 3x/4+1/6=x/8-1/3 | | 0=15x^2-64x+60 | | (3/4-1/8)x=-1/6 | | 5/8x=-1/6 | | |x^2+8|=0 | | x+(180-(3x+5)=180 | | 7=2g+9 | | x+6=x+9=x+3= | | x-(-1/2)=0 | | 1/5y-2/3=1/3y+1/5 | | 2(5+n)=31 | | -4/9=v-6 | | 6+u=-5 | | 5^(2x-1)=12^x | | 4(x-2)^2=20 | | x/10=12/20 | | x/10=15/20 | | -8/5=x/15 | | 1/8(z-1)=-2/3(z+3) | | 3x÷8=-9 | | 0.8y=72 | | X+6x+26-10+14=180 | | (4x-2)^2=(2x-5)(8x+4) | | 35=5x-7+4x | | (5n+2)=(8n-10) | | 24+8d=28+6d | | 9x+6=12x-12 | | 12+3=4(x-1) | | -0.4×-1.6y=9.6 |