If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x(x-14)=96
We move all terms to the left:
x(x-14)-(96)=0
We multiply parentheses
x^2-14x-96=0
a = 1; b = -14; c = -96;
Δ = b2-4ac
Δ = -142-4·1·(-96)
Δ = 580
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{580}=\sqrt{4*145}=\sqrt{4}*\sqrt{145}=2\sqrt{145}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-14)-2\sqrt{145}}{2*1}=\frac{14-2\sqrt{145}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-14)+2\sqrt{145}}{2*1}=\frac{14+2\sqrt{145}}{2} $
| 2p=3p/2+6 | | 3x+18+x+14=180 | | -2(2c-4)=1/3(-12c+24 | | 6/7•m-1/3=2/5 | | -42=6b-8 | | 4x=9=6x-13 | | 73=3(2x+5)−2(x−5) | | x-422.92=135.59 | | 6-c/5=0 | | 3a+12−6a=−9 | | -2/3x+10=24 | | 2x=12+3 | | (2x-18)+(x+58)=180 | | a=3.5 | | 7+75=3y+5 | | 9x-7-6x-8=180 | | 3.5=a | | 9+x/4=3 | | 25/t+6=2t-1 | | 8x-90=x | | 10x=195 | | M=y-y1 | | 1/3x+6=36 | | 16-5a+2a-1=-a | | (2x+16)=(8x-67) | | 7x-11=6x-18 | | 4^2-3^0=x3+2^3 | | 5x-36=33 | | 13w-2(4w+1)=w-66 | | 5+7–2–10+5t=5t | | 1/4x-4=-40 | | 183x-2.1x=8.2 |