If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x(x-32)=180
We move all terms to the left:
x(x-32)-(180)=0
We multiply parentheses
x^2-32x-180=0
a = 1; b = -32; c = -180;
Δ = b2-4ac
Δ = -322-4·1·(-180)
Δ = 1744
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1744}=\sqrt{16*109}=\sqrt{16}*\sqrt{109}=4\sqrt{109}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-32)-4\sqrt{109}}{2*1}=\frac{32-4\sqrt{109}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-32)+4\sqrt{109}}{2*1}=\frac{32+4\sqrt{109}}{2} $
| 6/5x-12=20 | | 5+1-x-2x+1=3+2+x | | Y=36/(x+1) | | 715+3n=448 | | 108+4n=76 | | 100-45n=11 | | -16+2n=35 | | 6n-2(3n-5)=4n-6 | | 8m^2-9=-7m | | -5u+2(u-5)=-22 | | 2.8=a+5.5 | | j3+6=10 | | -2=-3d+10 | | 6n-19=4n+17 | | 7z-2=10z+10 | | 3x+6x=7x+3x+10 | | 42-7x=24-x | | -21-8a=-1+6(4-5a | | 9/11=x/594 | | 14-7x=14-5x | | 2x/2=3 | | 7y-2y=115 | | 40+2x=120 | | b/7+89=99 | | (2n)/3=18 | | (2n)=18 | | 60=(4*h)+(6*h) | | 5y-15-3y=13 | | 5+(47/5x)=(6/5x^2) | | y/3+17=19 | | 5+47/5x=6/5x2 | | 1+10x=19x+x |