x*4+8x*2+1=5x(x*2+1)

Simple and best practice solution for x*4+8x*2+1=5x(x*2+1) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for x*4+8x*2+1=5x(x*2+1) equation:



x*4+8x*2+1=5x(x*2+1)
We move all terms to the left:
x*4+8x*2+1-(5x(x*2+1))=0
Wy multiply elements
4x+16x-(5x(x*2+1))+1=0
We calculate terms in parentheses: -(5x(x*2+1)), so:
5x(x*2+1)
We multiply parentheses
10x^2+5x
Back to the equation:
-(10x^2+5x)
We add all the numbers together, and all the variables
20x-(10x^2+5x)+1=0
We get rid of parentheses
-10x^2+20x-5x+1=0
We add all the numbers together, and all the variables
-10x^2+15x+1=0
a = -10; b = 15; c = +1;
Δ = b2-4ac
Δ = 152-4·(-10)·1
Δ = 265
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(15)-\sqrt{265}}{2*-10}=\frac{-15-\sqrt{265}}{-20} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(15)+\sqrt{265}}{2*-10}=\frac{-15+\sqrt{265}}{-20} $

See similar equations:

| 2x+30=-5 | | 5x+4+21=180 | | 19r-10r+3r-7r=10 | | 0.85/x=75 | | 19r−10r+3r−7r=10 | | 4x-7x+14=-7 | | 10x+7-6x= | | 2=3x+16÷5 | | 18d+d−8d−d−9d=20 | | 4(5+x=44 | | -8.4-7.5x=12.5+11.6 | | 13=-0.36x+12.6 | | 14h-3=2h^2 | | 103-y=204 | | 14v-49=v^2 | | 8x^2-7x=-11 | | 3.7x-1.8=5.2-3.3x | | x^2+6x=36+6x | | 14=12x+2. | | n-3/4=-22/4 | | -9/19=13/11x | | 17x+84=180 | | 7x-1=2x+6 | | 5y^2-3y=11 | | -7n(n+2)=-14-7n | | -3x-(-12)=-24-1/2x | | 123+(2x+7)=180 | | 4x+12=10x-33 | | -13.9+b/12.6=-13.306 | | 16.4x-4.8=6.4x+5.2 | | 4q−5=11 | | 62.52=27+t |

Equations solver categories