If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x*7.25x=160
We move all terms to the left:
x*7.25x-(160)=0
Wy multiply elements
7x^2-160=0
a = 7; b = 0; c = -160;
Δ = b2-4ac
Δ = 02-4·7·(-160)
Δ = 4480
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{4480}=\sqrt{64*70}=\sqrt{64}*\sqrt{70}=8\sqrt{70}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{70}}{2*7}=\frac{0-8\sqrt{70}}{14} =-\frac{8\sqrt{70}}{14} =-\frac{4\sqrt{70}}{7} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{70}}{2*7}=\frac{0+8\sqrt{70}}{14} =\frac{8\sqrt{70}}{14} =\frac{4\sqrt{70}}{7} $
| X²-19x+18=(X-N)(X-N) | | 3x4=x+10 | | 3x+4+x+4=68 | | 5x-2x=x-4=41 | | 6(x-11)=6 | | 5x–19=39 | | x+7=x*2=4x | | 15-3nn=-3 | | 2x2−13x−7=0 | | 5+5p=15 | | t(t+8)=6t+15 | | 4(3c-1=44) | | T(n)=1-1/n | | T(n)=1/2= | | x=7;3x2-4x-22 | | 2(x+4,3)+3x=-3x(x+1)+3,6 | | 5c+6=4c+45 | | 3+p-7=14 | | 4,9x-6,6=3,2+0,2 | | (z−2)(z+4)−8z+8=0 | | 5,5x-64=3,5x-+14 | | 6t+6=24 | | 36.428571428571=51m+4.4 | | 21x-567=147 | | 31x-239=970 | | 31x-174=198 | | 40x-1397=123 | | 11x-96=267 | | 15=9+h | | 7x–13=4x+11 | | 30x-287=313 | | s+2/2s-s/4=1/2 |