x*x+(7+x)(7+x)=10*10

Simple and best practice solution for x*x+(7+x)(7+x)=10*10 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for x*x+(7+x)(7+x)=10*10 equation:



x*x+(7+x)(7+x)=10*10
We move all terms to the left:
x*x+(7+x)(7+x)-(10*10)=0
We add all the numbers together, and all the variables
x*x+(x+7)(x+7)-100=0
Wy multiply elements
x^2+(x+7)(x+7)-100=0
We multiply parentheses ..
x^2+(+x^2+7x+7x+49)-100=0
We get rid of parentheses
x^2+x^2+7x+7x+49-100=0
We add all the numbers together, and all the variables
2x^2+14x-51=0
a = 2; b = 14; c = -51;
Δ = b2-4ac
Δ = 142-4·2·(-51)
Δ = 604
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{604}=\sqrt{4*151}=\sqrt{4}*\sqrt{151}=2\sqrt{151}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(14)-2\sqrt{151}}{2*2}=\frac{-14-2\sqrt{151}}{4} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(14)+2\sqrt{151}}{2*2}=\frac{-14+2\sqrt{151}}{4} $

See similar equations:

| -1-3p=-2p | | (1=7x)-6(-7-x)=36 | | 2(6x-8)-9=4x+12 | | a=(-3)-1 | | 2x=32-16 | | 25-15=a | | -8-8h=-6h | | (-17)-(-18)=a | | 4(6x-2)+5x=-13 | | 125x=25,000 | | -31-31=a | | 8=8v+4(v-10) | | 7x=+32=3x+12 | | 21-(-9)=a | | 3×(x-14)+8=8+5×(x-10) | | (-11)-22=a | | 0-10=a | | y=15+6y | | 6x+12=52−2x | | 0.2t^2+3t+10.4=100 | | 5-(-25)=a | | 20=21-4x | | w-5.4=3.27 | | 4n^2=-n+95 | | 2x+15+x+2x=180 | | 5-16=a | | 0.2t^2+3t=10.4 | | y-6.29=5.8 | | (-7)+n+(-37)=-12 | | 148/x=4/1 | | x+2.9=8.23 | | (-9)+(-11)+n=9 |

Equations solver categories