If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x*x+(x+3)(x+3)=(x+4)(x+4)
We move all terms to the left:
x*x+(x+3)(x+3)-((x+4)(x+4))=0
Wy multiply elements
x^2+(x+3)(x+3)-((x+4)(x+4))=0
We multiply parentheses ..
x^2+(+x^2+3x+3x+9)-((x+4)(x+4))=0
We calculate terms in parentheses: -((x+4)(x+4)), so:We get rid of parentheses
(x+4)(x+4)
We multiply parentheses ..
(+x^2+4x+4x+16)
We get rid of parentheses
x^2+4x+4x+16
We add all the numbers together, and all the variables
x^2+8x+16
Back to the equation:
-(x^2+8x+16)
x^2+x^2-x^2+3x+3x-8x+9-16=0
We add all the numbers together, and all the variables
x^2-2x-7=0
a = 1; b = -2; c = -7;
Δ = b2-4ac
Δ = -22-4·1·(-7)
Δ = 32
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{32}=\sqrt{16*2}=\sqrt{16}*\sqrt{2}=4\sqrt{2}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-2)-4\sqrt{2}}{2*1}=\frac{2-4\sqrt{2}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-2)+4\sqrt{2}}{2*1}=\frac{2+4\sqrt{2}}{2} $
| 3n+50=n+150 | | -3+6x=2+5x | | 3/4m+5=1/2m | | 3/5(y-2)-14/5=-4 | | 18v−10v+2v−7v−2v=15 | | -3x+6x=2+5x | | 6p+4p+p-12p-13p=14 | | a+(-1)/2=5 | | 4x-17=-2x+13 | | -6p+-4p+-p−-12p−-13p=14 | | 6x+8=6(x+3)-14 | | -x-7=4x+18 | | 15b-12b+4b=14 | | 22=6(y+5)-8y | | 6m-3m-3m+3m=3 | | 6(3x-3)=-19(3-x) | | 4-1/3z=7z+6 | | 17h-10h-2h=20 | | 5x+13=5(x+4)-11 | | 4.3x=28 | | -z+6=8 | | 15w-15w+w-w+4w=12 | | 6y+8=6(y+3)-10 | | 5(3+4z)=85 | | 2(11c−4)=36 | | 23x+18=24x+14 | | -10n+3(8+88n)=-6(n-4) | | 5r-4r-r+2r=4 | | 5r−4r−r+2r=4 | | -11+4n=-5(n-5) | | 6y+8=6(y+4)-16 | | 2^(x+7)=15 |