If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x+((20-x)/2)+((20-x)/2)=20
We move all terms to the left:
x+((20-x)/2)+((20-x)/2)-(20)=0
We add all the numbers together, and all the variables
x+((-1x+20)/2)+((-1x+20)/2)-20=0
We multiply all the terms by the denominator
x*2)+((-1x+20)+((-1x+20)-20*2)=0
We calculate terms in parentheses: +((-1x+20)-20*2), so:Wy multiply elements
(-1x+20)-20*2
We add all the numbers together, and all the variables
(-1x+20)-40
We get rid of parentheses
-1x+20-40
We add all the numbers together, and all the variables
-1x-20
Back to the equation:
+(-1x-20)
2x^2+(-1x-20)=0
We get rid of parentheses
2x^2-1x-20=0
a = 2; b = -1; c = -20;
Δ = b2-4ac
Δ = -12-4·2·(-20)
Δ = 161
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-1)-\sqrt{161}}{2*2}=\frac{1-\sqrt{161}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-1)+\sqrt{161}}{2*2}=\frac{1+\sqrt{161}}{4} $
| -16t^2+64(3)+80=0 | | 6(43+1.5)+7y-12=180 | | -3(5p+6)-2(1-14p)-3(3+4p)=0 | | 7m=3535=7m | | 2(x+3)=-6-2x | | -9-2s=s | | r-9/4=3/4 | | 4/5+1/3t=6 | | -2(x+3)=-62x | | -5-(15y-1)=2(y-16)=-y | | x2+27=0 | | 25,6=4u | | -10b=-b+9 | | 3/14-2/7=x-1/2 | | 120+0.70x=60+0.90x | | |8p+1|+3=12 | | 8(x-6)=-72 | | (20-2y)+2y=20 | | 2y/3+1/3=y/2+1/6 | | 7a–3=3–2a | | x-39=64 | | 2b-(-4)=(-18)-9b | | 7-2n=8n-(-2n) | | 17x-3=11x+51 | | 9x-6-12x+5=-7-4x | | -8q=-6q-10 | | r–12=14 | | 2.5q-4.3-3.7q=-0.2q-4.3 | | 7-2n=08n-(-4n) | | 4/3x=-16 | | 60+0.30x=20+0.50x | | x+14=54 |