If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x+(1/2)x=18500
We move all terms to the left:
x+(1/2)x-(18500)=0
Domain of the equation: 2)x!=0We add all the numbers together, and all the variables
x!=0/1
x!=0
x∈R
x+(+1/2)x-18500=0
We multiply parentheses
x^2+x-18500=0
a = 1; b = 1; c = -18500;
Δ = b2-4ac
Δ = 12-4·1·(-18500)
Δ = 74001
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-\sqrt{74001}}{2*1}=\frac{-1-\sqrt{74001}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+\sqrt{74001}}{2*1}=\frac{-1+\sqrt{74001}}{2} $
| 8x3=7 | | p*p/8=2.2 | | 9x+1=4x-3 | | 7=14-x | | -35=s/7-41 | | q−995=-469 | | x/9+33=35 | | 6=12-x | | -7x+11=19–x | | p*5p=4.5 | | 3x-33=123 | | w/4−1=2 | | 4x-3x=2x-7 | | 18–12y=-22–7y | | 18+4x=12-3x | | 2x+17=65−4x | | 9-7x+3x=25 | | 2(s+3)=+4s+s+5 | | 1.6=1.007^4x | | 2(s+3)=+s+4s+5 | | h()=62 | | -5w^2=125 | | 2(s+3)=+s4s+5 | | 2(s+3)+s=4s+5 | | d^2=11 | | 2(s+3)=4s+5+s | | 3m-4=11m-68 | | 4+2x=-2x+52 | | 5s+23=123 | | -3=x/3-4 | | 5x*2=10x+4 | | r−51=382 |