x+(1/2*x+3)=180

Simple and best practice solution for x+(1/2*x+3)=180 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for x+(1/2*x+3)=180 equation:



x+(1/2x+3)=180
We move all terms to the left:
x+(1/2x+3)-(180)=0
Domain of the equation: 2x+3)!=0
x∈R
We get rid of parentheses
x+1/2x+3-180=0
We multiply all the terms by the denominator
x*2x+3*2x-180*2x+1=0
Wy multiply elements
2x^2+6x-360x+1=0
We add all the numbers together, and all the variables
2x^2-354x+1=0
a = 2; b = -354; c = +1;
Δ = b2-4ac
Δ = -3542-4·2·1
Δ = 125308
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{125308}=\sqrt{4*31327}=\sqrt{4}*\sqrt{31327}=2\sqrt{31327}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-354)-2\sqrt{31327}}{2*2}=\frac{354-2\sqrt{31327}}{4} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-354)+2\sqrt{31327}}{2*2}=\frac{354+2\sqrt{31327}}{4} $

See similar equations:

| 26x+5+7x+10=180 | | 5n2+7n+2=0 | | 8-4=3+2x | | 2b+52=30 | | -4(X-2)+3x=2(X+5)-4x-5x | | 1/3(7x-5)=10 | | -1/4x-2/4+5=-x | | 2t-3t-7=7t+5 | | 7x+5=8x+10x | | (x)=2x2-4x | | 3(5a+8)=18a | | 30x-68=11(2x-3)+3x | | 7x+5=8x+10x+x | | 5x-3(4x-9)=-11 | | 16=y/2+11 | | -13-1/4x=7 | | n^2-16^n+64=0 | | 2x(x-1)=7x2-3x | | 7.50+1.00x=15 | | 4x-28=18x | | z+3/5-1/4=3/5 | | -64=15x-4 | | 25+5x=80 | | 32=25x+8 | | ​3/4(x+8)=9 | | d−2.8/0.2=−14 | | (X-24)+(2x+30)=180 | | ​34(x+8)=9 | | 2(-8b-2)=-12-8b | | 11=j+7 | | -5(5x-1)=-29-8x | | -16-6x=-6(x+30) |

Equations solver categories