x+(1/2x-4)=35

Simple and best practice solution for x+(1/2x-4)=35 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for x+(1/2x-4)=35 equation:



x+(1/2x-4)=35
We move all terms to the left:
x+(1/2x-4)-(35)=0
Domain of the equation: 2x-4)!=0
x∈R
We get rid of parentheses
x+1/2x-4-35=0
We multiply all the terms by the denominator
x*2x-4*2x-35*2x+1=0
Wy multiply elements
2x^2-8x-70x+1=0
We add all the numbers together, and all the variables
2x^2-78x+1=0
a = 2; b = -78; c = +1;
Δ = b2-4ac
Δ = -782-4·2·1
Δ = 6076
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{6076}=\sqrt{196*31}=\sqrt{196}*\sqrt{31}=14\sqrt{31}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-78)-14\sqrt{31}}{2*2}=\frac{78-14\sqrt{31}}{4} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-78)+14\sqrt{31}}{2*2}=\frac{78+14\sqrt{31}}{4} $

See similar equations:

| x(6-8)=10 | | -16=2n-10=-22 | | 42n=1÷42 | | 1/3=-5/4a+a | | 1/3=-5/4a+2 | | 2(n-4)+7(6n-1)=-59 | | |4y+8|-37=-5 | | z(3z+14)=90 | | 44=-3(v-5)+5(v+3) | | n-2(180)/n=3960° | | 5(7-2x)-7(1-2x)=52 | | 5/4=2x-3/x | | 5x+16=3x-8 | | -7(3r+5)+7(2r+3=-56 | | -236=-4+8(1+5n) | | -236=-4+8(1+5n | | 7/2x+1/2x=71/2x+5/2x | | -7(2-5k)=-329 | | m^2−16m+64=0 | | 22x+1-9.2x+4=0 | | -9(8r-1)=585 | | 5=a-15/8 | | 3+8x=3(x-1) | | 3x²+6x-42=0 | | 9(n+6)=108 | | 2b(5)=15 | | 1-8(x-4)=97 | | -153=7k-3(1-6k) | | 5x+x²-36=0 | | x²=9x+8 | | -104=-8(m+5) | | 4d​+2=8 |

Equations solver categories