x+(1/3x+8)=-36

Simple and best practice solution for x+(1/3x+8)=-36 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for x+(1/3x+8)=-36 equation:



x+(1/3x+8)=-36
We move all terms to the left:
x+(1/3x+8)-(-36)=0
Domain of the equation: 3x+8)!=0
x∈R
We add all the numbers together, and all the variables
x+(1/3x+8)+36=0
We get rid of parentheses
x+1/3x+8+36=0
We multiply all the terms by the denominator
x*3x+8*3x+36*3x+1=0
Wy multiply elements
3x^2+24x+108x+1=0
We add all the numbers together, and all the variables
3x^2+132x+1=0
a = 3; b = 132; c = +1;
Δ = b2-4ac
Δ = 1322-4·3·1
Δ = 17412
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{17412}=\sqrt{4*4353}=\sqrt{4}*\sqrt{4353}=2\sqrt{4353}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(132)-2\sqrt{4353}}{2*3}=\frac{-132-2\sqrt{4353}}{6} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(132)+2\sqrt{4353}}{2*3}=\frac{-132+2\sqrt{4353}}{6} $

See similar equations:

| 17s+3s+2s-4s=7 | | d²+3d-7=0 | | 0.25x+45=0.35x+35 | | 5+3y+11-2y=27 | | 0.25x+45=0.35+35 | | -3=1/6(12x+6) | | 0.4x-16=-6-0.85x | | 13+7x=69 | | 0.4x-16=-6-0.85 | | l*(l-4)=72 | | 0.89x+64=1.69x | | 2-4(2y+7)=0 | | 1.2/x=3.6/66 | | (3x)+(5x-30)=180 | | 4(x+17)=25 | | b-7.25=-15.5 | | ?x2.5=10 | | ×=2×+1x | | 2.5x+1.5=× | | 7x6=5x8+x | | |6x-4|=|2x-7| | | 3x2-147=03x2=147 | | 89=p+28 | | -19x-19=19x+19 | | Y^2=4y-9 | | Y=-5+6x | | 5y-6+50y^2=0 | | -w=4w-30 | | 6y=–54 | | 5y-6+50y=0 | | 6n−7−3n=3n−7 | | x*43/8+x=11200 |

Equations solver categories