x+(1/50x)=300

Simple and best practice solution for x+(1/50x)=300 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for x+(1/50x)=300 equation:



x+(1/50x)=300
We move all terms to the left:
x+(1/50x)-(300)=0
Domain of the equation: 50x)!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
x+(+1/50x)-300=0
We get rid of parentheses
x+1/50x-300=0
We multiply all the terms by the denominator
x*50x-300*50x+1=0
Wy multiply elements
50x^2-15000x+1=0
a = 50; b = -15000; c = +1;
Δ = b2-4ac
Δ = -150002-4·50·1
Δ = 224999800
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{224999800}=\sqrt{100*2249998}=\sqrt{100}*\sqrt{2249998}=10\sqrt{2249998}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-15000)-10\sqrt{2249998}}{2*50}=\frac{15000-10\sqrt{2249998}}{100} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-15000)+10\sqrt{2249998}}{2*50}=\frac{15000+10\sqrt{2249998}}{100} $

See similar equations:

| -3x+9=7x+4 | | 0.8x=11000 | | (6x-1)(4x+1)=90 | | -15=5x+8 | | 16=-5x+4 | | 90-26=4x | | -3k+4=-2-6-3k | | 180-45=9x | | 20x+4=x-9 | | x/x+3=x/x+6 | | 7×x+3=4×2x+4 | | 2k−k-k+2k=4 | | 14+n/9=19 | | 1/3=3x-10 | | 32g=4 | | 82=2m+22 | | 5=m+87 | | 25-4w=21 | | 15x-11x=4 | | 25−4w=21 | | 10x+6=70 | | 19x-16x=15 | | (84-f)8=64 | | n(-2)=−1−2+4 | | 4x^2/3=19 | | n(-2=)-1-2+4 | | 64=8(f−84) | | 4=-6x-2 | | 4n-2n+n-n=2 | | 16n-16n+2n+n-2n=9 | | 4(z+7)=84 | | 2(x-4)^2-20=30 |

Equations solver categories