x+(1/5x)=180

Simple and best practice solution for x+(1/5x)=180 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for x+(1/5x)=180 equation:



x+(1/5x)=180
We move all terms to the left:
x+(1/5x)-(180)=0
Domain of the equation: 5x)!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
x+(+1/5x)-180=0
We get rid of parentheses
x+1/5x-180=0
We multiply all the terms by the denominator
x*5x-180*5x+1=0
Wy multiply elements
5x^2-900x+1=0
a = 5; b = -900; c = +1;
Δ = b2-4ac
Δ = -9002-4·5·1
Δ = 809980
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{809980}=\sqrt{4*202495}=\sqrt{4}*\sqrt{202495}=2\sqrt{202495}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-900)-2\sqrt{202495}}{2*5}=\frac{900-2\sqrt{202495}}{10} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-900)+2\sqrt{202495}}{2*5}=\frac{900+2\sqrt{202495}}{10} $

See similar equations:

| -1=2p-5=5 | | 4(x+5)=3(x-2)-2(x+2)’ | | 6-9x=7x-10-36 | | 4^2x+1=8^1x | | 2(1/2)x-1=(1/2) | | -8y+3(y-7)=24 | | 6y-6=40 | | 8a-a=14 | | -m=2.18 | | x(2)+11=36 | | 13d-9d=4 | | 12x+60-4x-16=8x-32+40+12x | | 8+5x=2x+20 | | 12=8+12x/2 | | -3(6x-5)-6=-2 | | -1/5x=26 | | 13=z/2 | | 180=x+15+2x+35+3x-10 | | 0.50x+0.15(70)=41.5 | | -1/4t=17 | | 180=x+15+2x+35+3x+-10 | | 2(2r-1)=-2(3r+16) | | -5y+8y-2y=1y | | 2(2r-1)=-2(3r+16 | | 5(2x+1)-7x=-4(x-5) | | 3x=90+x/2 | | 15x+6=180 | | 12w−3=11+10w | | 5+6r=-4+7r | | 6a=5a-32+15 | | 1z-6z=4z-3-z | | 9h=7+10h |

Equations solver categories