x+(100/x)=110

Simple and best practice solution for x+(100/x)=110 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for x+(100/x)=110 equation:



x+(100/x)=110
We move all terms to the left:
x+(100/x)-(110)=0
Domain of the equation: x)!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
x+(+100/x)-110=0
We get rid of parentheses
x+100/x-110=0
We multiply all the terms by the denominator
x*x-110*x+100=0
We add all the numbers together, and all the variables
-110x+x*x+100=0
Wy multiply elements
x^2-110x+100=0
a = 1; b = -110; c = +100;
Δ = b2-4ac
Δ = -1102-4·1·100
Δ = 11700
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{11700}=\sqrt{900*13}=\sqrt{900}*\sqrt{13}=30\sqrt{13}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-110)-30\sqrt{13}}{2*1}=\frac{110-30\sqrt{13}}{2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-110)+30\sqrt{13}}{2*1}=\frac{110+30\sqrt{13}}{2} $

See similar equations:

| 2x+30=22-x | | -2w+6=14 | | 1/2x+5=4+1/2x | | 18-5d=3d-6=24 | | 18-5d=3d-624 | | (2x+60)+(3x+10)=180° | | 25x^2–1=0 | | 3^(2x+1)+4.3^(2x)=27 | | 10y+3=51 | | X+11=2x+23 | | 3x–1=87 | | 5x2+8=508 | | Y-4=6+2y | | 4x/3-(x-1/2)=5/4 | | 6^2x-3=9x | | x-4÷8=15 | | -5+2b/3=3 | | 20t/3=40 | | x+5/x=2x/x-4 | | 3b/2+1/3=2b/3+16/3 | | 2m+3=31 | | 3b/2+1/3=2b/2+16/3 | | 4+9x+3x^2=0 | | (3x)/4-5=x/2 | | 5x+13=2x-13 | | 3x-5/7-8=0 | | z2=196 | | 2m^2-48=0 | | 2(x+3)=6x-1 | | a-1=4((a-10) | | (0.5)^x=x | | 15-x=17-3x |

Equations solver categories