x+(12/x+1)=-9

Simple and best practice solution for x+(12/x+1)=-9 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for x+(12/x+1)=-9 equation:



x+(12/x+1)=-9
We move all terms to the left:
x+(12/x+1)-(-9)=0
Domain of the equation: x+1)!=0
x∈R
We add all the numbers together, and all the variables
x+(12/x+1)+9=0
We get rid of parentheses
x+12/x+1+9=0
We multiply all the terms by the denominator
x*x+1*x+9*x+12=0
We add all the numbers together, and all the variables
10x+x*x+12=0
Wy multiply elements
x^2+10x+12=0
a = 1; b = 10; c = +12;
Δ = b2-4ac
Δ = 102-4·1·12
Δ = 52
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{52}=\sqrt{4*13}=\sqrt{4}*\sqrt{13}=2\sqrt{13}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-2\sqrt{13}}{2*1}=\frac{-10-2\sqrt{13}}{2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+2\sqrt{13}}{2*1}=\frac{-10+2\sqrt{13}}{2} $

See similar equations:

| 66=-6(3b-1) | | V=3x+1= | | 7x2=82- | | 5x+17=3x-4+x | | F(x+1)=3(x+1)+2 | | 3+(2y-1)(y+5)=(y+2)(y+7) | | -4.1-4x=7.5 | | 4(x=5)=4x+5x | | 4.3t+-2.1t+-2.3=7.6 | | 14x=11x+10=-39 | | n/16=64 | | 4n-(20-3n)=10 | | 9x+(2x+6)=28 | | 1/6p+4=1/5p | | -15x+236=3x+12 | | 5(2z+4)=60 | | -6.1-5x=9.9 | | 11+1/3y=2 | | 2x=6x+1 | | -4=-7x+6x+5 | | 22/n=-6/5 | | 5x-2(x-5)=-2+5x+4 | | 25x-3=122 | | 9x-4(2-2)=x+20 | | 3(-7+6x)=75 | | -7(5x–7)=-301 | | 6(b-2)=6 | | 69b-2=6 | | 8g+4=7g+14 | | 1-(7÷x^2-9)=0 | | 6x+2+80+50=180 | | 3x+9+3x=63 |

Equations solver categories