x+(2/x)=4

Simple and best practice solution for x+(2/x)=4 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for x+(2/x)=4 equation:



x+(2/x)=4
We move all terms to the left:
x+(2/x)-(4)=0
Domain of the equation: x)!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
x+(+2/x)-4=0
We get rid of parentheses
x+2/x-4=0
We multiply all the terms by the denominator
x*x-4*x+2=0
We add all the numbers together, and all the variables
-4x+x*x+2=0
Wy multiply elements
x^2-4x+2=0
a = 1; b = -4; c = +2;
Δ = b2-4ac
Δ = -42-4·1·2
Δ = 8
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{8}=\sqrt{4*2}=\sqrt{4}*\sqrt{2}=2\sqrt{2}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-2\sqrt{2}}{2*1}=\frac{4-2\sqrt{2}}{2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+2\sqrt{2}}{2*1}=\frac{4+2\sqrt{2}}{2} $

See similar equations:

| 4a-12a=12 | | 4m-7^2=18 | | 7x+18+9x=8 | | -8+3=2x-21 | | -5x-10=2-(X=4) | | -7(3+2a)=15-18a | | (x+3)^2=(x+3)(x+3) | | X=150-3x | | 2r^2+12r-188.4=0 | | -18=4x-3 | | 2/5x-x/3=2 | | 540=5f-160 | | -20-7x=-25-2x | | -4y+1=4+2y | | (x+3)^2-2(x+5)=(x+1)(x+2)-5 | | -5/6+13=1/6x+17 | | 3(4x−2)=13x | | 6+3a=-6+a | | 6(x-4)-5=7x-12 | | -3+2c=-3 | | 3x-10+x+40+90=180 | | 9+2-10x=1-10x | | 5x^2-30x+81=0 | | x^+81=0 | | |8x+2|=3 | | 7t^2+5=0 | | 0,5x-2=6 | | 2x-1+x+x=12x-32 | | 3/x-3=-5/x+4+29/(x+3)(x+4) | | X=20+2p | | 34-12x=28×-36 | | 7a=12=4a+3 |

Equations solver categories