x+(2100/x)=1200

Simple and best practice solution for x+(2100/x)=1200 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for x+(2100/x)=1200 equation:



x+(2100/x)=1200
We move all terms to the left:
x+(2100/x)-(1200)=0
Domain of the equation: x)!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
x+(+2100/x)-1200=0
We get rid of parentheses
x+2100/x-1200=0
We multiply all the terms by the denominator
x*x-1200*x+2100=0
We add all the numbers together, and all the variables
-1200x+x*x+2100=0
Wy multiply elements
x^2-1200x+2100=0
a = 1; b = -1200; c = +2100;
Δ = b2-4ac
Δ = -12002-4·1·2100
Δ = 1431600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1431600}=\sqrt{400*3579}=\sqrt{400}*\sqrt{3579}=20\sqrt{3579}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-1200)-20\sqrt{3579}}{2*1}=\frac{1200-20\sqrt{3579}}{2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-1200)+20\sqrt{3579}}{2*1}=\frac{1200+20\sqrt{3579}}{2} $

See similar equations:

| 3x+7=(9x+x)+2x | | 5(x-1.4)-3x=3 | | 2(4-d+4d=12 | | 2(2x-7)-6(x-8=12.8 | | s+2.75=11 | | -29=5p | | -30=y/18 | | y2-72y-180=0 | | 12(x-5)=(3x+5) | | 6(5n+20)=30n | | -25000x=12000 | | 44x+47x=180 | | 90=64+x+8 | | 132=112+2x+4 | | 561/2=2l+2(2l-31/4 | | -41=x/3 | | 8-2/5(25-10a)=3/7(14a-21) | | 3(2b-5)+4(3b+2)=11 | | 3t+t+t=14 | | -7xn=63 | | -5x+4(2x-3)=-36 | | (x-4)=(3x+4) | | x^2+14x+96=0 | | 5(4x-1)=9x+2 | | 3(5x-1)+7=29 | | 3-6x+2+7x=16 | | 39=-5x-11 | | 14/3.3r=41 | | v-1/3=22/3 | | 5(x+2)-x=22 | | k-263.48=-381.08 | | (x-24)-56=134 |

Equations solver categories