x+(2x+1)+(5/2x+3)=180

Simple and best practice solution for x+(2x+1)+(5/2x+3)=180 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for x+(2x+1)+(5/2x+3)=180 equation:



x+(2x+1)+(5/2x+3)=180
We move all terms to the left:
x+(2x+1)+(5/2x+3)-(180)=0
Domain of the equation: 2x+3)!=0
x∈R
We get rid of parentheses
x+2x+5/2x+1+3-180=0
We multiply all the terms by the denominator
x*2x+2x*2x+1*2x+3*2x-180*2x+5=0
Wy multiply elements
2x^2+4x^2+2x+6x-360x+5=0
We add all the numbers together, and all the variables
6x^2-352x+5=0
a = 6; b = -352; c = +5;
Δ = b2-4ac
Δ = -3522-4·6·5
Δ = 123784
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{123784}=\sqrt{4*30946}=\sqrt{4}*\sqrt{30946}=2\sqrt{30946}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-352)-2\sqrt{30946}}{2*6}=\frac{352-2\sqrt{30946}}{12} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-352)+2\sqrt{30946}}{2*6}=\frac{352+2\sqrt{30946}}{12} $

See similar equations:

| -15-7t=16t-1-14 | | 2(-2y+3)-3y=20 | | 49x-5=96 | | 15x-9=11x7 | | 15x-9=11x711 | | 5x+25=10x+10 | | 15x-9=7x+11 | | 2(y+8)=20 | | 9(2x+3)-(7x-8)=2=x= | | 6.5x=-74 | | (3x+1)(x-2)=0. | | -9x-2(-3x)=-12 | | -16.71-1.5r+6.23=-13.81-1.8r | | 4x+1=3x–9 | | 17(b+1)=17 | | 1/4=(m+8)8 | | (3x+9)(3x+9)=2x+2(2x+2+27) | | 3x-24=25 | | -8h-12=-6h+20 | | 1q+6=3q | | 3x+3(8x-9)-7x=3=x= | | 3=17-5/4x | | 17s+8=8 | | 3(6y)-8y=-50 | | y-4y+3=-33 | | 17+7j=6j | | 4a+6=0 | | -40=-10s | | 5j-j-2=14 | | 5x+7(2x-8)=3x+8=x= | | -8a+18a=10 | | 8(-y)+3y=40 |

Equations solver categories