x+(4/3x-5)+(4/3x)=85

Simple and best practice solution for x+(4/3x-5)+(4/3x)=85 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for x+(4/3x-5)+(4/3x)=85 equation:



x+(4/3x-5)+(4/3x)=85
We move all terms to the left:
x+(4/3x-5)+(4/3x)-(85)=0
Domain of the equation: 3x-5)!=0
x∈R
Domain of the equation: 3x)!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
x+(4/3x-5)+(+4/3x)-85=0
We get rid of parentheses
x+4/3x+4/3x-5-85=0
We multiply all the terms by the denominator
x*3x-5*3x-85*3x+4+4=0
We add all the numbers together, and all the variables
x*3x-5*3x-85*3x+8=0
Wy multiply elements
3x^2-15x-255x+8=0
We add all the numbers together, and all the variables
3x^2-270x+8=0
a = 3; b = -270; c = +8;
Δ = b2-4ac
Δ = -2702-4·3·8
Δ = 72804
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{72804}=\sqrt{4*18201}=\sqrt{4}*\sqrt{18201}=2\sqrt{18201}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-270)-2\sqrt{18201}}{2*3}=\frac{270-2\sqrt{18201}}{6} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-270)+2\sqrt{18201}}{2*3}=\frac{270+2\sqrt{18201}}{6} $

See similar equations:

| 76x-152=76 | | 75x675=1275 | | -6n=-24/4 | | 3/10^x=10^x | | a2-14a+40=0 | | 5x^2-48x-144=0 | | g÷7=12+9 | | 36a2-12a+1=0 | | 5x+5=-58=4x | | 5x—20=2x+10 | | 10x-15=4x+4 | | t^2-30t+14=0 | | 2p+5=p-8-3p | | M=4(7-w)÷2 | | (12y+8)2y=50 | | 7=3g-4 | | −27=-2+5b−2+5b | | 80=x+12 | | 47=-{x}{11}+43−11 | | 3=2w+13 | | 47=-{x}{11}+43−11x​ +43 | | 7/n=14/42 | | 47-x11=43 | | n/6=108/12 | | 11w=5940w | | 7+2y=12 | | 4(0,5x+8)=34 | | 12=3n-7 | | 9x+10=8x–5 | | 4.2-x/2x=-2 | | 8^(x-5)=4^(2x-1) | | 3x+10=20-x |

Equations solver categories