x+(5/6x)=33

Simple and best practice solution for x+(5/6x)=33 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for x+(5/6x)=33 equation:



x+(5/6x)=33
We move all terms to the left:
x+(5/6x)-(33)=0
Domain of the equation: 6x)!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
x+(+5/6x)-33=0
We get rid of parentheses
x+5/6x-33=0
We multiply all the terms by the denominator
x*6x-33*6x+5=0
Wy multiply elements
6x^2-198x+5=0
a = 6; b = -198; c = +5;
Δ = b2-4ac
Δ = -1982-4·6·5
Δ = 39084
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{39084}=\sqrt{4*9771}=\sqrt{4}*\sqrt{9771}=2\sqrt{9771}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-198)-2\sqrt{9771}}{2*6}=\frac{198-2\sqrt{9771}}{12} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-198)+2\sqrt{9771}}{2*6}=\frac{198+2\sqrt{9771}}{12} $

See similar equations:

| 21/2x=63 | | 101/2x=63 | | 7.4b=5 | | 2x^2+50=-116 | | 6x-4x=2x+6 | | 2z^2+50=~166 | | Y=-50+b | | -4|3x-5|=8 | | 6(0)-8y=-24 | | X-(x*0.05)=15634 | | −2(−x+4)+4x−3=−2(−x+4)+4x−3=  3131 | | (6+x)/2=x+4 | | 3/2t2=4 | | 2x+3(2x-5)+4=x+3(3x-2)-6 | | x2−19x+102=−x-6 | | (1/16)=8^(4x-2) | | 7x+40=(1+4x) | | 4*4*4*4*3*4*4*4*4*7*4*4*4*4*29*4*4*4*4*59=x | | 58x=765 | | x^2−14x+11=11 | | 3x+6(x+1)=3(x+1)+5 | | 2(3x-4)-4x=-42 | | 14-10x=X+36 | | 4x+6-x-2=4x+6-x | | 80-6x=32 | | 80-6x=33 | | 5x+4-10=34 | | X-(x*0.05)=21351.85 | | 5.5+x=25 | | 5/6x+1/3=5/2 | | 1*2*1*2*1*2*1*2*1*2*1*2*1*2*1*2*1*2*1*2*1*2*1*2*1*2*1*2=x | | 3t+4(t-10)=t+10 |

Equations solver categories