x+(8x/100x)=2000

Simple and best practice solution for x+(8x/100x)=2000 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for x+(8x/100x)=2000 equation:



x+(8x/100x)=2000
We move all terms to the left:
x+(8x/100x)-(2000)=0
Domain of the equation: 100x)!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
x+(+8x/100x)-2000=0
We get rid of parentheses
x+8x/100x-2000=0
We multiply all the terms by the denominator
x*100x+8x-2000*100x=0
We add all the numbers together, and all the variables
8x+x*100x-2000*100x=0
Wy multiply elements
100x^2+8x-200000x=0
We add all the numbers together, and all the variables
100x^2-199992x=0
a = 100; b = -199992; c = 0;
Δ = b2-4ac
Δ = -1999922-4·100·0
Δ = 39996800064
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{39996800064}=199992$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-199992)-199992}{2*100}=\frac{0}{200} =0 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-199992)+199992}{2*100}=\frac{399984}{200} =1999+23/25 $

See similar equations:

| 2x+2x=x-95 | | f=1.8x(-40)+32 | | -7(w-1)=-3w+3 | | -4.9x^2+3x+10=0 | | 6x+23=1 | | 4x-14=6x-18 | | 15x+60=200 | | (1/5)x+13=x-107 | | (10x-3+84=21x+4.x) | | 16/10=1280/x | | 4(x+2)=6-2(1-2x) | | (7x+9)+(9x-5)=180 | | (x-14)+(x-2)=180 | | 5x-2=3x+3x6 | | 3x^2-30x-174=0 | | 17-v=6 | | 2x+10=5.60 | | (3x+20)(2x+30)=70 | | x+52=67+x | | -2v+13=9 | | 5k-3=-18 | | 11x+26=14x-7 | | 3x=8286 | | 3y/2-7=5 | | -2v+11=7 | | a/3+8=20 | | 7x=12(2x+5) | | 4x-13=6x+2 | | n/2.2=8.8+7 | | -6m+5m=-m | | g+575=4.293 | | 1.943+d=2.422 |

Equations solver categories