If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying x + (x + 1)(x + 2)(x + 3) = 75 Reorder the terms: x + (1 + x)(x + 2)(x + 3) = 75 Reorder the terms: x + (1 + x)(2 + x)(x + 3) = 75 Reorder the terms: x + (1 + x)(2 + x)(3 + x) = 75 Multiply (1 + x) * (2 + x) x + (1(2 + x) + x(2 + x))(3 + x) = 75 x + ((2 * 1 + x * 1) + x(2 + x))(3 + x) = 75 x + ((2 + 1x) + x(2 + x))(3 + x) = 75 x + (2 + 1x + (2 * x + x * x))(3 + x) = 75 x + (2 + 1x + (2x + x2))(3 + x) = 75 Combine like terms: 1x + 2x = 3x x + (2 + 3x + x2)(3 + x) = 75 Multiply (2 + 3x + x2) * (3 + x) x + (2(3 + x) + 3x * (3 + x) + x2(3 + x)) = 75 x + ((3 * 2 + x * 2) + 3x * (3 + x) + x2(3 + x)) = 75 x + ((6 + 2x) + 3x * (3 + x) + x2(3 + x)) = 75 x + (6 + 2x + (3 * 3x + x * 3x) + x2(3 + x)) = 75 x + (6 + 2x + (9x + 3x2) + x2(3 + x)) = 75 x + (6 + 2x + 9x + 3x2 + (3 * x2 + x * x2)) = 75 x + (6 + 2x + 9x + 3x2 + (3x2 + x3)) = 75 Combine like terms: 2x + 9x = 11x x + (6 + 11x + 3x2 + 3x2 + x3) = 75 Combine like terms: 3x2 + 3x2 = 6x2 x + (6 + 11x + 6x2 + x3) = 75 Reorder the terms: 6 + x + 11x + 6x2 + x3 = 75 Combine like terms: x + 11x = 12x 6 + 12x + 6x2 + x3 = 75 Solving 6 + 12x + 6x2 + x3 = 75 Solving for variable 'x'. Reorder the terms: 6 + -75 + 12x + 6x2 + x3 = 75 + -75 Combine like terms: 6 + -75 = -69 -69 + 12x + 6x2 + x3 = 75 + -75 Combine like terms: 75 + -75 = 0 -69 + 12x + 6x2 + x3 = 0 The solution to this equation could not be determined.
| -6n-13(-11n+8)=-10(n-4) | | 12-3y=21 | | g(6)=-1-76 | | 7(7+6x-1)=9(9+x+3) | | 2x-5=9x+5 | | 7x[squared]-20x+9=0 | | 49+7x=64+104 | | 2x-16=2(x-6)-4 | | 7x[squared]-6x=0 | | (3x^2)/(27x)=81 | | -4tan(X/20) | | (6-v)(3v+4)=0 | | 2x-1/3(-1-3x)=-2 | | 6x-13=3x+2 | | 5w-3=(w+3) | | 5/10+2,5/10=3x-6 | | 2x-3-8x=27 | | f(x)=4x^2+24x-8 | | 10+2+3p=36 | | 8x+24=6x+8 | | g(x)=x^2+5 | | 0,5x+2,5=3x-6 | | 9+11x=9x | | (y)dx+x(xy-1)dy=0 | | 3x-x+8+5x=2+10 | | q+(25)=81 | | (3x+9)(x-4)=0 | | 5/3x=4-3/2x | | 12x+17=6x+167 | | 10.5x151/8 | | 3x(x+2x)=4x^2 | | (x+14)=35 |