x+(x+1)(x+2)+x=366

Simple and best practice solution for x+(x+1)(x+2)+x=366 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for x+(x+1)(x+2)+x=366 equation:



x+(x+1)(x+2)+x=366
We move all terms to the left:
x+(x+1)(x+2)+x-(366)=0
We add all the numbers together, and all the variables
2x+(x+1)(x+2)-366=0
We multiply parentheses ..
(+x^2+2x+x+2)+2x-366=0
We get rid of parentheses
x^2+2x+x+2x+2-366=0
We add all the numbers together, and all the variables
x^2+5x-364=0
a = 1; b = 5; c = -364;
Δ = b2-4ac
Δ = 52-4·1·(-364)
Δ = 1481
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-\sqrt{1481}}{2*1}=\frac{-5-\sqrt{1481}}{2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+\sqrt{1481}}{2*1}=\frac{-5+\sqrt{1481}}{2} $

See similar equations:

| 8=5-12x | | -20t=-40 | | k3−3=5 | | k3− 3=5 | | 35g=5 | | x+8=4x+-13 | | 37−u=24 | | n–27=38 | | 8+7n=6n | | x+6+x+1=180 | | 7y−7=21 | | s/7+33=37 | | s7+ 33=37 | | 63v=9 | | 3d+6+132=180 | | 77=f/8+71 | | 77=f8+71 | | 77=f8+ 71 | | 8=72z | | -6(-2/3+2x)x=0 | | -6(-2/3+2x)x=1 | | 1=g÷3-3 | | 2u+43=55 | | 20/3.14=d | | -6/5x^2+2x-4/5=0 | | x/7+65=2x | | x^2-31=90 | | h÷4-2=1 | | 7z-9=3z-25 | | 2h+-20h=-18 | | 3+6x=2x+7 | | (2x+3)×(5x-3=) |

Equations solver categories