x+(x+1)/3x+17=1/2

Simple and best practice solution for x+(x+1)/3x+17=1/2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for x+(x+1)/3x+17=1/2 equation:



x+(x+1)/3x+17=1/2
We move all terms to the left:
x+(x+1)/3x+17-(1/2)=0
Domain of the equation: 3x!=0
x!=0/3
x!=0
x∈R
We add all the numbers together, and all the variables
x+(x+1)/3x+17-(+1/2)=0
We get rid of parentheses
x+(x+1)/3x+17-1/2=0
We calculate fractions
x+(2x+2)/6x+(-3x)/6x+17=0
We multiply all the terms by the denominator
x*6x+(2x+2)+(-3x)+17*6x=0
Wy multiply elements
6x^2+(2x+2)+(-3x)+102x=0
We get rid of parentheses
6x^2+2x-3x+102x+2=0
We add all the numbers together, and all the variables
6x^2+101x+2=0
a = 6; b = 101; c = +2;
Δ = b2-4ac
Δ = 1012-4·6·2
Δ = 10153
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(101)-\sqrt{10153}}{2*6}=\frac{-101-\sqrt{10153}}{12} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(101)+\sqrt{10153}}{2*6}=\frac{-101+\sqrt{10153}}{12} $

See similar equations:

| 5+2y=29 | | 4/2.5=8/x | | 10x+8x-3=15 | | 10=2+v/2 | | 125=25u | | (68-2x)=(82-3x) | | .4x+5.49=9.49 | | 7l=56 | | 12q-7q-1=14 | | x÷35=15 | | 7c+9=5c+15 | | -12-x=18 | | l/7=56 | | 13c=195 | | 20x+2x=x+60 | | 2(2x-6)+4=-24 | | -6+n/5=-10 | | c/13=195 | | 13y-9y+4y-4=4 | | 4x-9-8x=-27 | | 3(x+6)=2(2x+5) | | 1g=36 | | 4(m+2)=48 | | −17+9m​=21 | | 5(2w+6)=50 | | -1=4+r/2 | | .x+6=14 | | 12.5g=50 | | 4p-p+4=16 | | y/7-4=21 | | 2(3x+4)=3(x+1)+11 | | 8y+3=52+y |

Equations solver categories