x+(x+110)(x+25)=180

Simple and best practice solution for x+(x+110)(x+25)=180 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for x+(x+110)(x+25)=180 equation:



x+(x+110)(x+25)=180
We move all terms to the left:
x+(x+110)(x+25)-(180)=0
We multiply parentheses ..
(+x^2+25x+110x+2750)+x-180=0
We get rid of parentheses
x^2+25x+110x+x+2750-180=0
We add all the numbers together, and all the variables
x^2+136x+2570=0
a = 1; b = 136; c = +2570;
Δ = b2-4ac
Δ = 1362-4·1·2570
Δ = 8216
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{8216}=\sqrt{4*2054}=\sqrt{4}*\sqrt{2054}=2\sqrt{2054}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(136)-2\sqrt{2054}}{2*1}=\frac{-136-2\sqrt{2054}}{2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(136)+2\sqrt{2054}}{2*1}=\frac{-136+2\sqrt{2054}}{2} $

See similar equations:

| 45=-2x-5 | | −2p+20=12 | | 5(3x+7)=2+4(4x-4) | | 8d=3=35 | | n-17=42 | | 10-m=-2+5m | | 217=7(4n+3) | | -10x+142+48=180 | | 2x+3+51+x=180 | | 5x+11=5x-27 | | 0.04x=0.5 | | 4x+10x=-4 | | 2u-4=8u= | | x9=-16 | | 2x-8=31+x | | 2p-15=8p+3 | | a÷8=6 | | 12x─15=6─3 | | 12f,f=3 | | 1^3(9-6x)=5-2x | | -n-8(n-4)=95 | | (n+12)/4=n16 | | 2u-4=8u | | 17/34=7/b | | 3c=c^2+32 | | -3=-13+q | | 0.5(8x+20)=18 | | (3x+6)+41+(6x-5)+(4x+7)+62(7x-11)=90 | | 7y+5=30+2y | | X÷y=72 | | 6b+6(b+2)=108 | | x-11=-36 |

Equations solver categories