x+(x+40)+x(x+65)=180

Simple and best practice solution for x+(x+40)+x(x+65)=180 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for x+(x+40)+x(x+65)=180 equation:



x+(x+40)+x(x+65)=180
We move all terms to the left:
x+(x+40)+x(x+65)-(180)=0
We multiply parentheses
x^2+x+(x+40)+65x-180=0
We get rid of parentheses
x^2+x+x+65x+40-180=0
We add all the numbers together, and all the variables
x^2+67x-140=0
a = 1; b = 67; c = -140;
Δ = b2-4ac
Δ = 672-4·1·(-140)
Δ = 5049
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{5049}=\sqrt{9*561}=\sqrt{9}*\sqrt{561}=3\sqrt{561}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(67)-3\sqrt{561}}{2*1}=\frac{-67-3\sqrt{561}}{2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(67)+3\sqrt{561}}{2*1}=\frac{-67+3\sqrt{561}}{2} $

See similar equations:

| 18x-7=13x+10 | | 2+10•5=x | | m/2+5=8 | | 0,08x+x=2000 | | 2(4x+3)=10-2 | | 3x^2-50x+176=0 | | 3+3+4x15=x | | 3.7-(8.1x+5.4)-(2.6x+8.3)=-3.1x+(8-1.6x) | | 5x=7+32 | | 3+4x5=14 | | 11x/6=4 | | (3x+2)/2=13 | | 1005x=1000 | | 2(x-9)=3x-28 | | 52x=3125 | | (2x-4)/5=4 | | 4z=z-6 | | 18x²+13x+2=0 | | 4z=6-z | | (1-x)/2=0.95 | | x-1=0.3x | | 2^x+2x+3=0,x | | 2^x+2x+3=0 | | x^2+2x+3x=0 | | -6.3w-2.8=-5.3+1.2 | | 4x+6=x+10 | | X-14+2=-35(x+12) | | x-3=5/(3-x) | | 3u-17=-6-17 | | X2+13x=90 | | x*180=2 | | -5y+10=-7y+16 |

Equations solver categories