x+(x-35)+(x+46)+1/2x=360

Simple and best practice solution for x+(x-35)+(x+46)+1/2x=360 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for x+(x-35)+(x+46)+1/2x=360 equation:



x+(x-35)+(x+46)+1/2x=360
We move all terms to the left:
x+(x-35)+(x+46)+1/2x-(360)=0
Domain of the equation: 2x!=0
x!=0/2
x!=0
x∈R
We get rid of parentheses
x+x+x+1/2x-35+46-360=0
We multiply all the terms by the denominator
x*2x+x*2x+x*2x-35*2x+46*2x-360*2x+1=0
Wy multiply elements
2x^2+2x^2+2x^2-70x+92x-720x+1=0
We add all the numbers together, and all the variables
6x^2-698x+1=0
a = 6; b = -698; c = +1;
Δ = b2-4ac
Δ = -6982-4·6·1
Δ = 487180
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{487180}=\sqrt{4*121795}=\sqrt{4}*\sqrt{121795}=2\sqrt{121795}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-698)-2\sqrt{121795}}{2*6}=\frac{698-2\sqrt{121795}}{12} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-698)+2\sqrt{121795}}{2*6}=\frac{698+2\sqrt{121795}}{12} $

See similar equations:

| (x-1)+(x)=(13) | | 10+-4z=22+-2z | | 18=-2(g+-5) | | x+(x-35)+(x+46)+1/2=360 | | v=45*v | | (n+1)(n+5)=0 | | w/4+13=31 | | 10+-4z=22+-22 | | 2.4+10m=7.28 | | 2x°(x+8°)+x=180° | | −10x−5=  −8x+11 | | 3x-2/24=1/9 | | 179=8-9x | | 8y-10-5y+9=0 | | 2(x+1/3)=31/3 | | 8h+-7h+6=-9 | | 5.5(x-6)=4 | | 17=y/2-12 | | 25.5m=1.5+2m | | 40.2=2x+12 | | 2(1x/5+31/3)=x | | 9x+12=5x-36 | | 2(3a-4)=4(2a-6) | | 3x-8=7×+4 | | -7n+12=1/2(14n+24) | | 7=-14-3x | | 5(a-1)=3a+15 | | 5+22a=2×10÷2 | | 9p+8=161 | | 5.30(x+2.50)=55.20 | | 14p+-13p=-12 | | 135m=540 |

Equations solver categories