x+(x-35)+(x-46)+1/2x=180

Simple and best practice solution for x+(x-35)+(x-46)+1/2x=180 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for x+(x-35)+(x-46)+1/2x=180 equation:



x+(x-35)+(x-46)+1/2x=180
We move all terms to the left:
x+(x-35)+(x-46)+1/2x-(180)=0
Domain of the equation: 2x!=0
x!=0/2
x!=0
x∈R
We get rid of parentheses
x+x+x+1/2x-35-46-180=0
We multiply all the terms by the denominator
x*2x+x*2x+x*2x-35*2x-46*2x-180*2x+1=0
Wy multiply elements
2x^2+2x^2+2x^2-70x-92x-360x+1=0
We add all the numbers together, and all the variables
6x^2-522x+1=0
a = 6; b = -522; c = +1;
Δ = b2-4ac
Δ = -5222-4·6·1
Δ = 272460
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{272460}=\sqrt{4*68115}=\sqrt{4}*\sqrt{68115}=2\sqrt{68115}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-522)-2\sqrt{68115}}{2*6}=\frac{522-2\sqrt{68115}}{12} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-522)+2\sqrt{68115}}{2*6}=\frac{522+2\sqrt{68115}}{12} $

See similar equations:

| x+4/3=2x-2 | | ¾x+6=-15 | | r/8+-19=-23 | | –6+3q=10+7q | | (x-10)+4x=180 | | −6x+12=8 | | 9=x/3-15= | | 30=8b | | 7(2x-3)+6=-2(-6x-20( | | 9=v÷7 | | 7x+21+3x=-3 | | x+2x+14=5x+2 | | 5(x-6)=-2(x-13) | | 240+15x=17x | | 8(h+40)=-88 | | a.6a+5a=−11 | | 2/5(5x-15)-4=-10 | | x/5-3=7/15 | | w-6.59=5.55 | | 2/w=0.4/0.07 | | -28=-5k- | | 3y-1=77 | | -8=a÷4-6 | | 13(y-7)=-117 | | 97x-1+51x-1=146 | | –8+5w=9w | | 7p+4=−8+p | | 15x+-3=10x+5 | | –7=–3y+11 | | 10t-25=65 | | 0.03x=0.066 | | p=-56;p=14;p=70 |

Equations solver categories