x+(x-45)+(x-35)+1/2x=360

Simple and best practice solution for x+(x-45)+(x-35)+1/2x=360 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for x+(x-45)+(x-35)+1/2x=360 equation:



x+(x-45)+(x-35)+1/2x=360
We move all terms to the left:
x+(x-45)+(x-35)+1/2x-(360)=0
Domain of the equation: 2x!=0
x!=0/2
x!=0
x∈R
We get rid of parentheses
x+x+x+1/2x-45-35-360=0
We multiply all the terms by the denominator
x*2x+x*2x+x*2x-45*2x-35*2x-360*2x+1=0
Wy multiply elements
2x^2+2x^2+2x^2-90x-70x-720x+1=0
We add all the numbers together, and all the variables
6x^2-880x+1=0
a = 6; b = -880; c = +1;
Δ = b2-4ac
Δ = -8802-4·6·1
Δ = 774376
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{774376}=\sqrt{4*193594}=\sqrt{4}*\sqrt{193594}=2\sqrt{193594}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-880)-2\sqrt{193594}}{2*6}=\frac{880-2\sqrt{193594}}{12} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-880)+2\sqrt{193594}}{2*6}=\frac{880+2\sqrt{193594}}{12} $

See similar equations:

| 1x=13+5x | | m/19+27=215 | | x=34=212 | | -11-5t/6=1 | | -y-4=-18 | | -3(3p+5)-2(6-17p)=3(5+3p) | | 32=6x-9-x+8x | | 0=2t^2-2t-5 | | 6(r-3)=-2+5(r-5) | | t/3-4=4;12 | | (3x+8/4)+(x+44/6)=13 | | 2{2+3(y-1)}=22 | | 60=-16t^2+96t | | 3+-11n=n+-13 | | 2(b–7)=6 | | 5x+2x-3=-3+3x+10x | | c/7+3=-2 | | 19-3c=-5 | | 2-36s=34 | | 5y+2=1/2(10+4) | | |5x-3|+12=4 | | 5-2x-28=4x=1 | | 4/5(15x20)-7x=5/6(12x-24)+6 | | 21-3(2x-1)+8x=42 | | 6+4(2w-2)=-2(6w-4)+8w | | (2X3y-5)=40 | | 1+x=13+5x | | m/18+27=215 | | x/2+5/4=1/6 | | -195=-5(7+8k) | | 39/8=13x | | 9(7x-9)=29 |

Equations solver categories