x+1/2x+(x+35)=180

Simple and best practice solution for x+1/2x+(x+35)=180 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for x+1/2x+(x+35)=180 equation:



x+1/2x+(x+35)=180
We move all terms to the left:
x+1/2x+(x+35)-(180)=0
Domain of the equation: 2x!=0
x!=0/2
x!=0
x∈R
We get rid of parentheses
x+1/2x+x+35-180=0
We multiply all the terms by the denominator
x*2x+x*2x+35*2x-180*2x+1=0
Wy multiply elements
2x^2+2x^2+70x-360x+1=0
We add all the numbers together, and all the variables
4x^2-290x+1=0
a = 4; b = -290; c = +1;
Δ = b2-4ac
Δ = -2902-4·4·1
Δ = 84084
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{84084}=\sqrt{196*429}=\sqrt{196}*\sqrt{429}=14\sqrt{429}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-290)-14\sqrt{429}}{2*4}=\frac{290-14\sqrt{429}}{8} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-290)+14\sqrt{429}}{2*4}=\frac{290+14\sqrt{429}}{8} $

See similar equations:

| 2(u+14)=14 | | s-80/6=2 | | x+2=12-x | | x+1/2x+x+35=180 | | q-89/2=5 | | x+29=-4x-17 | | 6s+41=165 | | 75=6p+15 | | x/6=-81 | | w/9-1=2 | | x+11=8+3x | | Y=5/4x-12 | | p/9+21=27 | | 90+2x+7+x+5=180 | | 34=2x-12x+5 | | 18x=5+17+-12x | | -8(3b-7)=4-2(b+3) | | 10x-24-3x=0.5(14x-24) | | 3/4(8a+20)=5a+10 | | x/2+2=-5 | | 4(-8x+5)=-12x-20 | | 3X-4a+5=A | | 2x+11=3(2x-3) | | 11x2=7. | | x+2=x(1+6) | | u/4-16=12 | | 36x2-13x-30=0 | | 46=y/3+16 | | 8p=928 | | x+90+52.9=180 | | (6x+3)+(4x+7)=90 | | -8(x-7)=-10(x-9) |

Equations solver categories