x+1/2x+(x+45)=180

Simple and best practice solution for x+1/2x+(x+45)=180 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for x+1/2x+(x+45)=180 equation:



x+1/2x+(x+45)=180
We move all terms to the left:
x+1/2x+(x+45)-(180)=0
Domain of the equation: 2x!=0
x!=0/2
x!=0
x∈R
We get rid of parentheses
x+1/2x+x+45-180=0
We multiply all the terms by the denominator
x*2x+x*2x+45*2x-180*2x+1=0
Wy multiply elements
2x^2+2x^2+90x-360x+1=0
We add all the numbers together, and all the variables
4x^2-270x+1=0
a = 4; b = -270; c = +1;
Δ = b2-4ac
Δ = -2702-4·4·1
Δ = 72884
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{72884}=\sqrt{4*18221}=\sqrt{4}*\sqrt{18221}=2\sqrt{18221}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-270)-2\sqrt{18221}}{2*4}=\frac{270-2\sqrt{18221}}{8} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-270)+2\sqrt{18221}}{2*4}=\frac{270+2\sqrt{18221}}{8} $

See similar equations:

| -5m-(-18m)+m=16 | | 7x+-5=16 | | 3x-7=8=3x | | 6m-4m-m+3m-2m=4 | | 7a^+21a-196=0 | | 2y3+3=5;1 | | 12g-(-2g)-14g-17g=-17 | | 2/3x=L4 | | f=(18)+22.8 | | -0,5x^2+0,5x=0 | | 6x+x=440 | | -5h-(-6h)+18h=-19 | | 7y-3y+4=-20 | | 13p+7=25 | | N-(-4n)-10n+16n-15n=12 | | 19a+-20a+-3a=-20 | | -0,5x^2+1,5x=0 | | 19+(-20a)+(-3a)=-20 | | 24−2(x+8)=30 | | z+(-2z)+3z-7z+(-5z)=20 | | 4x(12x4)=13 | | 3x+33+78=180 | | 6×a-10=18 | | 8s-6s-2s+4s=16 | | 3(3x+8)-12=1/2(18x+24) | | 3y+y=6y | | C=1/3m | | 16x+14x-19x+-7x=16 | | 10.1=w/5.3 | | 69*n=4761 | | 1/3x+5=5.5 | | s+2(2+3+4s+5=148 |

Equations solver categories