x+1/2x+(x-5)=180

Simple and best practice solution for x+1/2x+(x-5)=180 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for x+1/2x+(x-5)=180 equation:



x+1/2x+(x-5)=180
We move all terms to the left:
x+1/2x+(x-5)-(180)=0
Domain of the equation: 2x!=0
x!=0/2
x!=0
x∈R
We get rid of parentheses
x+1/2x+x-5-180=0
We multiply all the terms by the denominator
x*2x+x*2x-5*2x-180*2x+1=0
Wy multiply elements
2x^2+2x^2-10x-360x+1=0
We add all the numbers together, and all the variables
4x^2-370x+1=0
a = 4; b = -370; c = +1;
Δ = b2-4ac
Δ = -3702-4·4·1
Δ = 136884
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{136884}=\sqrt{4*34221}=\sqrt{4}*\sqrt{34221}=2\sqrt{34221}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-370)-2\sqrt{34221}}{2*4}=\frac{370-2\sqrt{34221}}{8} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-370)+2\sqrt{34221}}{2*4}=\frac{370+2\sqrt{34221}}{8} $

See similar equations:

| 1/4(6x+2)-3=-1/2-4+2x | | 1/5(x-6)=3 | | 5(8*1-3y=11) | | 12.5x=112.50 | | 7x-6+2x+11.2=180 | | -5=12+4(2x-2)-6 | | 3(7*3-2y=13) | | 5/12x=1/15-11/14 | | 87=4x+13 | | 7q+4-3q+7-5q=15 | | 13-4x=6x+17 | | 7q+4-3q-7+5q=15 | | 5x+17+10x-5=180 | | 2x•x•x=128 | | 1/9(2x+5)+3=12 | | 3-5+x=19 | | 4(2*5-3y=16) | | 2(x-1980)+6=12 | | .35x+5=2.6 | | 100x-x=0.2828 | | 3(x–3)=5(1.5+x) | | -1/5+2+c=1/5(10c-20) | | 2x÷14=16 | | 2(5*2+7y=10) | | 8x+2(-4x-6)=−12 | | 2(3x-1)+3(-x+2)=9x+6 | | 2^x=1.4 | | 6.66x=180 | | q/3=2.3 | | F(x)=0.5X2-2 | | 6x+(2/3x)=180 | | 4*(x-6)=80 |

Equations solver categories