x+1/2x=10x=

Simple and best practice solution for x+1/2x=10x= equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for x+1/2x=10x= equation:



x+1/2x=10x=
We move all terms to the left:
x+1/2x-(10x)=0
Domain of the equation: 2x!=0
x!=0/2
x!=0
x∈R
We add all the numbers together, and all the variables
-9x+1/2x=0
We multiply all the terms by the denominator
-9x*2x+1=0
Wy multiply elements
-18x^2+1=0
a = -18; b = 0; c = +1;
Δ = b2-4ac
Δ = 02-4·(-18)·1
Δ = 72
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{72}=\sqrt{36*2}=\sqrt{36}*\sqrt{2}=6\sqrt{2}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-6\sqrt{2}}{2*-18}=\frac{0-6\sqrt{2}}{-36} =-\frac{6\sqrt{2}}{-36} =-\frac{\sqrt{2}}{-6} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+6\sqrt{2}}{2*-18}=\frac{0+6\sqrt{2}}{-36} =\frac{6\sqrt{2}}{-36} =\frac{\sqrt{2}}{-6} $

See similar equations:

| 1/x-1+½=2/x²-1 | | 2^x-5=64 | | ⅓x=2 | | -4.8(6.3x)-4.18)=-58.56 | | n(+4)=7(n+2)+4 | | n(+4)=7(n+2+4 | | 2x-21=3x² | | 2500000=1*2^(x/0.4) | | 2500000=1*2^(t/0.4) | | 9q−20=4q+35 | | 2x–5=40 | | 3b−8=7−2b | | 10^3y=21 | | 26x=156x= | | 6b2-2b+12=0 | | X(4x-1)-5=0 | | 2x+1x-6=9 | | (x^2+2)(x^2-12)=72 | | 3a2=4a-12 | | (8.7+x)/1,1=7 | | 17/7=v/10 | | 2b-3=-b2 | | F(x)=x2-6x-60 | | 2b-3=-b | | 180/(2x-6)=15 | | -11x+⅘=x-14 | | m2-3m=-12 | | 2a+5=25-5 | | 7/11=18/x=1 | | (5-x7)3+6=0 | | 4.9t^2+8.55-29.7=0 | | Y=7/12x+3/4 |

Equations solver categories